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Asymptotic winding angle distributions for planar Brownian 
motion with drift 

A Comtett, J Desbois and C Monthus 
Division de Physique Th6oriquet, IPN, 91406 Ofsay Ceder France 

Received 20 May 1993 

Abstrad. We sNdy the asymptotic winding angle dishibution of a No-dimensional Bmwnian 
curve around a given pint .  The inSuence of boundaries and/or drifts on l h i s  distribution is 
addressed. In particular, we show that, for some special driRs. the limiting distribution is given in 
tenus of Levy laws. 

The study of winding properties of Brownian curves goes back to the pioneering work of 
LBvy [ l ]  and Spitzer [Z]. Since that time, some effort has been devoted to these problems by 
mathematicians [3,4] as well as by physicists [S-71. A variety of methods have been devised 
ranging from the use of refined probability techniques to a formulation involving constrained 
path integrals or two-dimensional conformal field theory 181. 

From a physical point of view, it is clear that entanglements of polymer chains in network 
systems or in concentlated solutions may play an important role, especially concerning their 
elastic or viscoelastic properties. The archetypal problem is to consider entanglements 
of a macromolecule with a straight line [9]. Neglecting excluded volume effects, the 
macromolecule can in some cases be modelled by a free three-dimensional random walk. In 
the continuum l i t  (diffusion approximation), using the factorization property of Brownian 
motion, one is left with a two-dimensional problem, namely the study of the angle e ( t )  wound 
around a given point 0 by a planar Brownian curve of length t. This problem was first 
addressed by Spitzer in 19.58 who proved that the rescaled angle 8' = 28/ In t is distributed 
according to the Cauchy law 

whose characteristic function 
,y(~') = (&L'O') = e-IA'I 

gives infinite even moments of all orders. 
Pitman and Yor [3] extended this result by spJitting the total winding angle 8 into 81 

and 82, called respectively the small and big winding angles. 81 (82) is the total angle wound 
by the Brownian particle when it moves inside (outside) the disc of centre 0 and radius R (see 
figure 1). They obtained the characteristic function K(A',, A;) of the joint limit law P(8; .  6';) 
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Figure 1. A Brownian panicle entering into U!! disc of radius R .  SZ is the total angle wound by 
the particle when it is outside the disc (big winding). 81 is the total angle wound by the particle 
when it is inside the disc ( s d  winding). 

where 0; = 28, /In t, 9; = 2ez/ In t. 

walk on a square lattice. The resulting expression 
More recently, Belisle [4] obtained an analogue of Spitzer's law for windings of random 

leads to the same law as (3) for the big windings only, i.e. when A i  = 0. 
The occurence of infinite moments in Spitzer's law was also analysed by Rudnick and 

Hu [6]. By removing from the plane a disc around 0, they proved that the tail of the probability 
distribution reads, when 10'1 + fa, 

lim ' ( e ' )  a ( 5 )  

In contrast with (Z), all positive moments are now finite. Thus, the behaviour of the Brownian 
particle in the vicinity of 0 plays an essential role in the construction of the law. 

The purpose of this work is to investigate this feature in detail by considering Brownian 
motions with drift (and/or excluded area) on a finite domain. In particular, it will be shown 
that limiting distributions can take the form of generalized Levy laws for some special drifts. 
Interesting physical consequences of the presence of a drift on the winding properties of a 
polymer chain have already been discussed by Houchmandzadeh et al [7 ] .  These authors have 
studied the influence of the interaction of the polymer with a rigid rod on the localization 
transition. Using a path-integral formulation, we will show along similar lines that the 
asymptotic law is governed by the non-analytic behaviour of the ground-state energy of an 
associated quantum mechanical Hamiltonian. 

To begin, let us consider a Brownian particle starting at TO (at time to = 0) and arriving at T 

(at timet) with a probability P P ( T ,  TO. t ) .  The particle is subjected to a force F = -VU 
depending on the position. The corresponding Langevin equation reads 

d r  - = F t ?I(!) 
dt 
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where B(t)  is a Gaussian white noise such that 

( % ( a ) )  = 0 ( V z ( O O # ( t ' ) )  = 2Da&d(t - t ' ) .  

The time evolution of P is therefore described by the Fokker-Planck equation 

(7) -=  V(D0VP - F P ) .  
at  

Without loss of generality, we take DO = 1 for the diffusion constant 

on the radial distance r. 
In the following we will only consider radial forces, therefore the potential U only depends 

It is convenient to set 

Then (7) leads to 

_ _ =  ax HX 
at (9) 

where H = -A + V = -A - EAU + :(VU)*. The probability P can thus be expressed in 
terms of the eigenfunctions pn and eigenvalues E, of the above Hamiltonian: 

The expression of the ground-state wavefunction (Eo = 0) 

@o(r) = exp-- 
2 

shows that P is properly normalized: Sd2TP(T, TO, t) = 1. 
In a path-integral formulation P reads 

where 'Dr(r) is the measure on the functional space of trajectories T(T). 
We are interested in winding angle distributions, the final point T being left unspecified: 

A convenient way to impose the constraint in this path integral is to set 



5640 A Comfet et ai 

The characteristic function for the winding angle at the time t is therefore 

where 
1 1 .  
r 9 HA = - - & ( F a r )  + -(-las - + v(r). 

Due to the integration over T ,  only 0-angular momentum eigenstates will contribute. Dropping 
the angular part of HA, we get 

1 h2 
HA = - -&@a,) + V ( r )  + - r r2 

(15) 
hZ =no+- 
r2 ’ 

Suppose the particle is allowed to wander everywhere in the plane without drift ( U @ )  = 
V ( r )  = 0); then (14) and (15) lead to 

K ( A - , r o ; t )  = lmrdrlmkdke-’”lJlil(kr)lJl*l(kFo) 

where Jli l (kr)  is a Bessel function of the first kind and F is the confluent hypergeomehic 
function regular at the origin. Henceforth, we will only consider the l i t  t + 00, 0 + w, i.e. 
r i / t  and A small (since is the conjugate variable with respect to 0, by Fourier kansfotmation 
only small h values will give significant contributions to P(0 ,  TO; t ) ) .  The asymptotic 
expression of K is then reduced to 

Fourier transforming with respect to h we recover Spitzer’s law (1). 
However, the picture is somewhat different when the particle is constrained to move inside 

a disc of centre 0 and radius R.  The spechum of HA is now discrete and, in the limit t + CO, 
the leading part of K is given by the ground state of H i .  In this case, only the lowest-order 
contribution in A, AE(A) = E@) - EO of the ground-state energy shift will be needed: 

K ( h ,  ro; t )  - (18) 

Assuming that AE(A) can be obtained by perturbation theory, we get from (15) 
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If a disc of radius R I  around 0 is removed (@,Jr) = 0 if R I  < r < R )  then the integral 
exists and 

AE(A) - A'. (20) 

Fouriertransformationof(18)showsthat therandomvariabIee/J?hasaGaussiandistribution; 
in other words the particle performs a quasi-one-dimensional Brownian motion along the 
tangential direction. 

It is worth noticing that, qualitatively, the same result would hold for a free particle on the 
whole disk if 
(i) V ( r )  = or2/?. In that case, @o(r) - rl.1 for small r and (19) exists. (Of course, (19) still 

exists for v ( r )  = orZ/ra, a > 2).  
(U) V ( r )  = 0 and only big windings are taken into account (0 is counted only when 

r > R I ,  Hi. HO when r < R I ) .  
Consider now a particle allowed to wander everywhere inside the disc, without drift 

( V ( r )  = 0, B is the total winding angle). Then @0(0) # 0 and (19) diverges. This clearly 
shows that the leading order of the perturbation is less than 2. To proceed further, one can use 
Dirichlet boundary conditions: @( R )  = 0. This amounts to considering Brownian curves that 
never meet the frontier of the disc. 

The sound-state energy shift AE(A) is obtained by comparing the boundary conditions 

Jii iWR) = 0 (21) 

and 

Jo(koR) = 0 .  (22) 

For small A we get 

where sl = b R  is the first positive zero of Jo. This shows that the scaling variable p S e / t  
(where S is the area of the disc and p = J I  (s1)'/2n) is distributed according to a Cauchy law. 

This result can be easily recovered by a perturbative analysis. A standar qerturbative 
treatment of the hZ/r2  term would, however, yield an infinite energy shift because the 
unperturbed wavefunction does not vanish at r = 0. Since the singular nature of the interaction 
term forces the vue wavefunction to vanish at r = 0, it is convenient to define an auxiliary 
function @A as @ A @ )  = rI*'&(r). The eigenvalueequation for@A(r) thenreads If;& = E&, 
where 

The perturbative analysis can now be carried out. One obtains 

where @o(r) = A"Jo(kr) is the normalized ground-state wavefunction of HO on the disc. A 
straightforward calculation gives back (23). Similar results would be obtained with Neumann 
boundary conditions (i.e. pure reflection at r = R ) .  
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ThepreviousanalysisshowsthatB/t will beaCauchyvariable whenever @0(0) is finiteand 
non,zero (for instance, for a repulsive potential v(r)  = o12/ra, a < 2). The same conclusion 
wil l  also hold if we only count the small windings (r < RI). It is easy to prove, along the 
same lines, that small and big windings are not correlated in the limit t + W. A correlation 
only occurs if the particle is allowed to explore the whole plane (see (3)). 

However, this is not the end of the story. It can happen that (19) diverges and (25) vanishes. 
This implies that the critical exponent of the perturbation 

AE(A) =Au 

is such that 1 < cr < 2. 
As an illustration consider the case 

where 0 < p < 4, and RO is a suitable length scale such that RO > R. The corresponding 
potential reads 

with0 < (Y p(,9 + I )  < t. One has 

U ( r )  = 28 In(- ln(r/Ro)) . (28) 

In this case it is interesting to investigate in some details the perturbation expansion; AE(h) 
can be written as 

Moreover, we observe that, to lowest order in A, 
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For some small value of r ,  say r', potential V ( r )  crosses A21r2. Consequently, when 
must be taken as (31) and when r > r', as (30). Continuity of the logarithmic r < r', 

derimtive determines r': 

Under these conditions, (29) becomes 

After some algebra, we get 

AE(h) - 1Al''- 0 ,<a < $ 
-A211n1A11 a = l  4 

- A 2  a > ? .  3 

In the case (35~1, the variable X = O/t ' / -  is distributed according to the Levy law 

dA e-iiX e-plm P(X) = - 
27c -w 

In particular, d l  the moments are infinite (unless they trivially cancel). 
Likewise, the law corresponding to (35b) has all its moments infinite. However, it is not 

known as a stable LCvy law. Case (3%) shows that when the potential is sufficiently repulsive 
at the origin, the winding angle distribution again becomes Gaussian: all the moments are 
finite. Thus a sharp transition occurs at the critical value a = :. 

Weexpectthatresult(35a)still holdsfortherange - a  < a < 0,correspondingtoattractive 
potentials. Thus, the set of LCvy laws would be exhaustive. However, further investigation is 
needed to confirm this point. 
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